2.6: Properties of Determinants

To each square matrix A, we can associate a scalar called the **determinant** of A and denoted det(A). The process for computing det(A) will be described in class.

Theorem 2.64: Let $A \in M_n(\mathbb{R})$.

- If *A* has a row or column of zeros, then det(A) = 0.
- 2 If $A = (a_{ij})$ is an upper triangular, lower triangular, or diagonal matrix, $det(A) = a_{11}a_{22}\cdots a_{nn}$.
- So For all $n \ge 1$, $det(I_n) = 1$.
- For all $B \in M_n(\mathbb{R})$, det(AB) = det(A) det(B).
- If A is invertible, then $det(A) \neq 0$ and $det(A^{-1}) = 1/det(A)$.

Note: For $A, B \in M_n(\mathbb{R})$, the quantity det(A + B) does not simplify in any meaningful way. In general, it is not equal to det(A) + det(B).

2.7: Rank and Nullity

Let *A* be any $m \times n$ matrix.

- The rank of A is defined to be the number of nonzero rows in rref (A). (This is equal to the number of leading 1s in rref (A).
- The nullity of A is defined to be the number of free columns in rref (A).

• rank(A) + null(A) = n. (Theorem 2.67)

If A and B are row-equivalent matrices, then rank(A) = rank(B) and null(A) = null(B). (Theorem 2.68)

Theorem 2.69: Let *A* be any $n \times n$ matrix. The following conditions on *A* are equivalent:

- rank(A) = n.
- **2** null(A) = 0.
- $oref (A) = I_n.$
- *A* can be written as the product of elementary matrices.
- *A* is invertible.
- $A\vec{\mathbf{x}} = \vec{0}$ has only the solution $\vec{\mathbf{x}} = \vec{0}$.
- **②** $A\vec{\mathbf{x}} = \vec{\mathbf{b}}$ has a unique solution for all $\vec{\mathbf{b}} \in \mathbb{R}^n$.
- $\bullet \quad \det(A) \neq 0.$